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1. Introduction

The maximally supersymmetric theory N = 4 SYM is dual to type II superstring on

AdS5 × S5 and plays a central role in the AdS/CFT correspondence [1]. The existence of

a strong-weak coupling duality links the integrability properties on the string side [2] to a

well-known form of internal integrability in the superconformal theory [3]. At one-loop, the

scale dependence of renormalized composite operators is governed in the planar limit by

a local integrable super spin-chain Hamiltonian [4]. At higher loops, integrability persists

and is described by a long-range lattice Hamiltonian whose interaction range increases

with the loop order [5]. In particular, AdS/CFT duality has been crucial in prompting the

higher loop proposal for the S-matrix of N = 4 SYM theory [6 – 16].

The energy levels of the integrable spin-chain compute the anomalous dimension of

scaling fields in the superconformal theory, i.e. the energies of would-be dual string states.

For a given specific operator, the calculation amounts to finding the relevant solution of

a rather complicated set of Bethe Ansatz equations. Of course, finding a closed formula

for a class of operators is a more difficult task. In some applications, aimed at accurate

tests of AdS/CFT duality, one considers operators which are gauge invariant single traces

with varying length. In the large length limit, the size corrections can be computed by a

thermodynamical analysis of the Bethe Ansatz equations [17, 18]. In exceptional cases, it is

also possible to exhibit closed formulae for the anomalous dimensions at finite length [19].

Here, we shall be interested in the class of so-called quasipartonic twist operators [20].

They have a basically fixed field content, but are constructed with an arbitrary number of

covariant derivatives distributed among the fields. The twist operators are characterized

by a simple control parameter which is the total number of derivatives, simply related to

the total Lorentz spin N . From the spin-chain point of view, they are associated with fixed

length states, at least in the one-loop description of mixing. The thermodynamical limit

of a large number of Bethe roots is nothing but the large spin limit N → ∞ and in this

regime it is possible to derive integral equations computing the roots distribution at all

orders in the gauge coupling [11, 16, 21].

Surprisingly, in some cases it is also possible to provide closed multi-loop expressions

for the anomalous dimension γ(N) of special twist operators as functions of the Lorentz

spin N [7, 22 – 26]. Currently, it is not known how to derive systematically the functions

γ(N) beyond the one-loop level although some progress can be done exploiting the Baxter

approach.1 Recent analytical attempts are discussed in [27, 28].

The anomalous dimensions γ(N) are expected to contain important information en-

coded in their dependence on N . The physical content of this information can be extracted

by exploiting known facts valid for similar twist operators arising in the QCD analysis of

deep inelastic scattering (DIS) [29, 30]. In that context, one can consider the leading twist-

2 contributions and connect the total spin N to its dual, in Mellin space, which is the

1A. V. Kotikov, private communication.
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Bjorken variable x. Two opposite regimes emerge in a natural way, each carrying its lore of

approximations. The first is small x→ 0 and is captured by the BFKL equation [31]. It can

be analyzed by considering the Regge poles of γ(N) analytically continued to negative (un-

physical) values of the spin. A recent detailed example of such analysis is discussed in [22].

Here, we shall be interested in the properties of the second quasi-elastic regime which

is x → 1, i.e. large N . The following general features can be inferred from the large N

behavior of known three loops twist-2 QCD results as well as from general results valid at

higher twist [32]

1. The leading large N behavior of the anomalous dimensions γ(N) is logarithmic

γ(N) = 2Γ(αs) log N + O(N0), N → ∞. (1.1)

The function Γ(αs) is a universal function of the coupling related to soft gluon emis-

sion [32 – 34]. It appears as a cusp anomalous dimension governing the renormaliza-

tion of a light-cone Wilson loop describing soft-emission processes as quasi-classical

charge motion.

2. The subleading terms in the large N expansion of γ(N) obey (three loops) hidden

relations, the Moch-Vermaseren-Vogt (MVV) constraints [35, 36]. Recently, they

have been extended to an infinite set of higher orders relations in the 1/N expan-

sion [37]. Basically, they predict that roughly half of the 1/N expansion is completely

determined by the other half.

A very promising strategy is certainly that of investigating these features in the context

of planar N = 4 SYM, where integrability techniques afford a relatively painless multi-loop

analysis. This approach could shed light on the otherwise elusive beautiful structures found

in the closed expressions of twist anomalous dimensions.

¿From this point of view, we can reconsider point 1. in the above list. It is well known

that an integral equation has been derived providing the all-order weak coupling expansion

of Γ(αs) [11, 16]. The calculation has been extended at strong-coupling in the explicit case

of the sl(2) sector [38] and is amenable to wide generalizations [39]. Thus, our attitude is

that the general remark 1. is a strong check for any guessed expression γ(N) describing a

particular class of twist operators.

Concerning 2., the understanding of MVV relations is instead more intriguing and less

conclusive. In the twist-2 QCD context, it is known that the existance of MVV relations is

related with space-time reciprocity of DIS and its crossed version of e+e− annihilation into

hadrons (see [40] for a very clear pedagogical discussion). This is a non-trivial all-order

generalization of the one-loop Gribov-Lipatov (GL) reciprocity [41]. Positive three loops

tests for QCD and for the universal twist-2 supermultiplet in N = 4 SYM are discussed

in [37, 42]. Technically, reciprocity in the twist-2 case holds for the Dokshitzer-Marchesini-

Salam (DMS) evolution kernel governing simultaneously the distribution and fragmentation

functions [43]. The MVV relations follow as a straightforward corollary.

The formalism of the DMS reciprocity respecting kernel can be extended to higher

twists and in particular to various twist-3 sectors where closed formulae for the anomalous

– 3 –
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dimensions are available in N = 4 SYM. Remarkably, the generalized Gribov-Lipatov

reciprocity works perfectly. The first example is the relatively simple sl(2) sector [25], where

a 4 loops complete proof is available. Additional evidences of reciprocity for fermionic and

gauge operators (both at three loops) have been later discussed in [26, 24].

Here, we present a complete analysis of a nested gluonic sector [26, 44] that we study

at four loops. Our main result is that reciprocity holds rigorously even in this case, modulo

possible wrapping effects.

This paper is organized as follows: In section 2, as a reminder, we recall the main QCD

facts concerninig the generalized Gribov-Lipatov reciprocity. In section 3 we present the

suitable extension to N = 4 SYM theory with a summary of known successfull reciprocity

tests. In section 4 we discuss in details the class of operators studied in this paper. The four

loop anomalous dimension is presented in section 5, and a complete proof of its reciprocity

properties is derived in section 6. Finally, section 7 contains a discussion of the relation

beween reciprocity and wrapping. In appendix A, we collect several tests of our results

related to the large N expansion. Appendix B is a short primer on nested harmonic sums

collecting useful definitions and formulae.

2. Reciprocity of twist-2 anomalous dimensions in QCD

2.1 Gribov-Lipatov reciprocity

The scale dependence of QCD parton distribution functions in deep inelastic scattering

is governed by the the DGLAP evolution equations [41, 45, 46]. The non perturbative

ingredients are the space-like (S) splitting functions PS(x), related to the anomalous di-

mensions of twist-2 operators [47] through a Mellin transformation. Three loop results

for the anomalous dimensions γS(N) governing the evolution of singlet and non-singlet

unpolarized distributions have been obtained in [35, 36].

The related crossed process of e+e− annihilation into hadrons involves the non per-

turbative fragmentation functions. In their scale evolution the role of splitting functions

is played by the so-called time-like (T) splitting functions PT (x), which allow to define

time-like anomalous dimensions γT (N) again by a Mellin transformation. A basic question

is then: What is the relation between space and time-like kernels PS and PT ?

A first relation between PS(x) and PT (x) is the Drell-Levy-Yan relation [48]

Drell-Levy-Yan : PT (x) = −
1

x
PS

(
1

x

)
. (2.1)

This is an analytic continuation from one kernel to the other which passes through the

singular point x = 1 at the border of the respective disjoint physical regions. It is a

relation trivial at one-loop and full of subtleties at higher orders. A discussion at two loops

is presented in [49].

A second equation has been proposed by Gribov and Lipatov [41], that reads

Gribov-Lipatov : PT (x) = PS(x) ≡ P (x). (2.2)

– 4 –
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Assuming this result and the (true) Drell-Levy-Yan relation, we get the following reciprocity

for the common function P (x)

Gribov-Lipatov reciprocity : P (x) = −xP

(
1

x

)
. (2.3)

In Mellin space,2 it can be shown that this means (in the sense of asymptotic expansions

at large N)

P (N) = f(J2), J2 = N (N + 1), N → ∞. (2.4)

Gribov-Lipatov reciprocity holds at one-loop, but fails at two loops [50, 51]. The explicit

violation can be written as

1

2

[
P

(2)
T,qq(x) − P

(2)
S,qq

]
=

∫ 1

0

dz

z

{
P (1)

qq

(x
z

)}

+
P (1)

qq (z) log z. (2.5)

It is kinematic in the sense that it is entirely expressed in terms of the one-loop kernel. A

deep explanation for this naive observation is illustrated in the next section.

2.2 Reciprocity respecting evolution equations

The evolution equations for the parton distributions or fragmentation functions Dσ(x,Q2)

(σ = S, T ) take the standard convolution form

∂τ Dσ(x,Q2) =

∫ 1

0

dz

z
Pσ(z, αs(Q

2))Dσ

(x
z
,Q2

)
, (2.6)

where Pσ are the space or time-like splitting functions and τ = log Q2. Mellin transforming,

this reads

∂τ Dσ(N,Q2) = −
1

2
γσ(N,αs(Q

2))Dσ(N,Q2), (2.7)

where

Dσ(N,Q2) =

∫ 1

0

dx

x
xN Dσ(x,Q2), γσ(N,Q2) = −

1

2

∫ 1

0

dx

x
xN Pσ(x, αs(Q

2)). (2.8)

Based on several deep physical ideas, it has been proposed to rewrite the evolution equation

in a way that aims at treating the DIS and e+e− channels more symmetrically, in the spirit

of Gribov-Lipatov reciprocity [52, 43]. The reciprocity respecting evolution equations take

the form

∂τ Dσ(x,Q2) =

∫ 1

0

dz

z
P(z)Dσ

(x
z
, zσ Q2

)
, (2.9)

where σ = −1, 1 for the space and time like channels respectively. In the equation above we

have not written in details the scale dependence of the coupling for reasons to be explained

later.

The crucial point is that the evolution kernel P(z) is the same in both channels. As an

immediate check, one recovers for the non-singlet quark evolution the Curci-Furmansky-

Petronzio relation eq. (2.5). Other features related to the Low, Burnett, Kroll theorems [53]

are discussed in [43]. A successfull three loop check using the γT evaluated by Drell-

Levy-Yan analytic continuation is described in [54] for the non-singlet QCD anomalous

dimensions.

2The Mellin transform F(N) of f(x) is defined by F(N) =
R

1

0
dx xN−1 f(x).
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2.3 Moch-Vermaseren-Moch relations and reciprocity of the kernel P

An important test of eq. (2.9) can be done in the x → 1 limit. To explain it, let us

briefly recall what are known as the Moch-Vermaseren-Moch (MVV) relations for twist-2

anomalous dimensions in QCD. The large spin N expansion of the (unpolarized) 3 loops

anomalous dimensions [35, 36] starts with a leading logarithm behavior 2Γcusp(αs) log N .

The subleading ∼ logp N/N q corrections are found to obey special relations first investi-

gated by MVV in [35, 36] (see also, at two loops, [50]). Roughly speaking, these relations

predict the three loop 1/N terms in terms of the N0 two loop ones.

Neglecting effects due to the running couplings, one immediately derives from eq. (2.9)

the non-linear relation (after a rescaling of P)

γσ(N) = P

(
N −

1

2
σ γσ(N)

)
. (2.10)

In the spirit of the derivation of the reciprocity respecting evolution equation eq. (2.9) it

is natural to guess that the kernel P obeys the Gribov-Lipatov reciprocity relation

P(x) = −xP(1/x). (2.11)

As an immediate corollary, the following general parametrization of the large N expansion

of γσ (we define N = N eγE and A = 2Γcusp)

γσ(N) = A log N +B + Cσ
log N

N
+

(
Dσ +

1

2
A

)
1

N
+ · · · , (2.12)

must satisfy the constraints

Cσ = −
1

2
σ A2, Dσ = −

1

2
σ AB, (2.13)

which are highly non-trivial since A,B,C and D are functions of the gauge coupling. The

first relation in (2.13) is indeed verified at three loops by the explicit evaluation of γσ. The

second (subleading) relation requires, in QCD, a correction related to the non-zero value of

the β function, as discussed in [37]. For twist-2 operators in the finite N = 4 SYM theory,

it is correct as it stands.

Thus, the two MVV relations in eq. (2.13) strongly suggest that the reciprocity rela-

tion eq. (2.11) holds. In N -space, it is equivalent to the claim that the kernel P(N) has a

large N expansion in integer powers of J2 of the form

P(N) =
∑

n

an(log J)

J2n
, (2.14)

where J2 = N (N + 1), and an are polynomials which can be computed in perturbation

theory as series in αs. The expansion eq. (2.14) can be read as a parity invariance under

N → −N − 1, although this must be considered only around N = ∞ and not in strict

sense because of the Regge poles at negative N .

The property eq. (2.14), or its equivalent form eq. (2.11), has indeed been checked at

three loops in [37] for several classes of twist-2 operators in QCD. It generates an infinite

set of MVV-like relations for all the subleading terms in the large N expansion of the

anomalous dimensions. The previous relations eq. (2.13) are just the first cases.

– 6 –
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3. Generalized reciprocity in N = 4 SYM

A generalization of eq. (2.14) has also been proposed based on the analysis [56, 34] of the

one-loop anomalous dimensions of maximal helicity quasipartonic operators [20] built with

(collinear) twist-1 fundamental fields X (scalars, gauginos or gauge fields) and light-cone

projected covariant derivatives.

Such operators can be written in a general non-local form as

O(z1, . . . , zL) = Tr
{
X(z1 n) · · ·X(zL n)

}
, (3.1)

where z nµ is the light-like ray and X can be a (suitable) N = 4 scalar field ϕ, gaugino

component λ, or holomorphic combination A of the physical gauge field Aµ
⊥. We shall

denote generically such operators as O
ϕ, O

λ, and O
A. Linear combinations of such local

fields provide eigenstates of the dilatation operator.

At one-loop, these operators do not mix and transform under the collinear conformal

group as [s]⊗L where [s] is the infinite dimensional sl(2) representation with collinear spin

s(ϕ) =
1

2
, s(ψ) = 1, s(A) =

3

2
. (3.2)

At more than one loop, the operators O
ϕ and O

λ continue to scale autonomously. The

reason is that O
ϕ belongs to the N = 4 sl(2) subsector which is closed at all orders.

Also, O
λ appears in the closed sl(2|1) subsector where there is mixing between scalars and

fermions, but not for the maximally fermionic component [58]. In the case of O
A, the

description as a gluonic operator is only correct at one-loop [44] with mixing effects at

higher orders (see the discussion in [26]).

Let us now illustrate the correct extension of eq. (2.14) valid in the N = 4 context

for the operators (3.1). Since the β function is identically zero, the kernel P(N) for the

space-like ordinary anomalous dimensions obeys the relation

γ(N) = P

(
N +

1

2
γ(N)

)
. (3.3)

The one-loop anomalous dimensions of O
ϕ,λ,A can be computed as energies of XXX−s

integrable chains and in particular can be studied at large Lorentz spin. The analysis

of [56, 34] suggests that reciprocity takes the form

P(N) =
∑

n

an(log J)

J2n
, (3.4)

where J is obtained by replacing N(N + 1) with the suitable Casimir of the collinear

conformal subgroup SL(2,R) ⊂ SO(4, 2)

J2 = (N + Ls− 1) (N + Ls). (3.5)

If the expansion (3.4) holds, we shall say that P is a reciprocity respecting (RR) kernel.

Beyond one loop, a test of reciprocity requires the knowledge of the multi-loop anomalous

dimensions as closed functions of N . These are currently available in the cases of twist-2

and 3, as discussed in the following sections.

– 7 –
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3.1 Twist-2 universal supermultiplet

As a first example, we discuss twist-2 operators. Due to supersymmetry, the collinear

conformal spin (3.2) is irrelevant and we can consider the simplest case of operators built

with scalar fields. These are described by non-nested sl(2) Bethe equations [7]. In this

case, we have, as in QCD,

J2 = N (N + 1). (3.6)

Let us briefly recall how the reciprocity property eq. (3.4) of a generic function f(N)

translates into the GL reciprocity of its Mellin transform F (z) defined by

f(N) =

∫ 1

0

dz

z
zN F (z). (3.7)

This is a useful exercise since we shall generalize it to other cases later. Here, we follow

the method by [37]. With the change of variable

z = e−λ x, λ =

(
J2 +

1

4

)−1/2

=
1

N + 1
2

, (3.8)

we can write

f(N) = λ

∫ ∞

0
dx e−x eλ x/2 F (e−λ x). (3.9)

Reciprocity means that the integrand is locally odd under λ → −λ in a neighborhood of

λ = 0. This gives

eλ x/2 F (e−λ x) = −e−λ x/2 F (eλ x), (3.10)

which means

F (z) = −z F (1/z). (3.11)

In the paper [42], this relation is proved for the known three loops anomalous dimensions

derived by the Kotikov, Lipatov, Onishchenko and Velizhanin (KLOV) maximum tran-

scendentality principle [57]. The method exploits several properties of the nested harmonic

sums (see appendix B) which are the building block for the perturbative result. The same

conclusion is also obtained in [37] by directly checking the expansion eq. (3.4).

3.2 Twist-3 operators with scalar fields

Again, these are described by non-nested sl(2) Bethe equations. We have

J2 = 4
N

2

(
N

2
+ 1

)
+

3

4
. (3.12)

The constant 3/4 is irrelevant to the proof of reciprocity and one can define

J2 def
=

N

2

(
N

2
+ 1

)
. (3.13)

Four loops closed expressions for γ(N) have been obtained in [23, 22]. They involve har-

monic sums evaluated at

Ñ =
N

2
. (3.14)

Since J2 = Ñ(Ñ + 1), the reciprocity proof can be done with the methods used in the

twist-2 case with scalar fields. This calculation is done in [25].

– 8 –
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3.3 Twist-3 operators with gauginos

This case has been treated in [24] where the following result was obtained

γλλλ(N) = γϕϕ(N + 2). (3.15)

Here, γλλλ is the anomalous dimension in this sector and γϕϕ is the one for twist-2 operators

with scalar fields.

From the two relations

γϕϕ(N) = Pϕϕ

(
N +

1

2
γϕϕ(N)

)
, (3.16)

γλλλ(N) = Pλλλ

(
N +

1

2
γλλλ(N)

)
, (3.17)

we deduce

Pλλλ(N) = Pϕϕ(N + 2). (3.18)

Since Pϕϕ(N) is reciprocal with respect to J2 = N(N + 1) we conclude that Pλλλ(N) is

reciprocal with respect to

J2 = (N + 2)(N + 3). (3.19)

This is precisely the Casimir in this sector (L = 3, s = 1), showing that again reciprocity

is respected.

3.4 Twist-3 operators with gauge fields

For this case, three loop anomalous dimensions are known and a few MVV relations have

been tested [26]. Since we are going to extend the calculation and the reciprocity proof to

the more difficult four loop case, we devote to this sector the next section.

4. Gluonic operators

As we mentioned in section 3, we are interested in single-trace maximal helicity quasi-

partonic operators which in the light-cone gauge take the form

O
A
N,L =

∑

n1+···nL=N

an1,...nL
Tr

{
∂n1

+ A(0) · · · ∂nL
+ A(0)

}
, ni ∈ N, (4.1)

where A is the holomorphic combination of the physical gauge degrees of freedom Aµ
⊥ and

∂+ is the light-cone projected covariant derivative (in light-cone gauge the gauge links are

absent). The coefficients {an} are such that O
A
N,L is a scaling field, eigenvector of the

dilatation operator. The total Lorentz spin is N = n1 + · · ·nL. The number of elementary

fields equals the twist L, i.e. the classical dimension minus the Lorentz spin.

At one-loop, the anomalous dimensions of the above operators can be found from the

spectrum of a non-compact XXX−3/2 spin chain with L sites. At higher orders we abandon

the quasipartonic detailed description and work in terms of superconformal multiplets. The

first step is to identify the psu(2, 2|4) primary of the multiplet where such operators appear

– 9 –
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as descendant. In full generality such multiplets in twist-3 appear in the decomposition of

the symmetric triple tensor product (VF ⊗ VF ⊗ VF )S where VF is the singleton infinite

dimensional irreducible representation of psu(2, 2|4).

Following [59], we have a detailed decomposition

(VF ⊗ VF ⊗ VF )S =

∞⊕

n=0
k∈Z

cn [V2k,n + V2k+1,n+3] , (4.2)

where cn are suitable multiplicities and Vn,m well defined modules. In particular, for even

N and m = 2, the one-loop lowest anomalous dimension in V2,N is associated with an

unpaired state and has been proposed to be [59]

γ2,N =
λ

8π2

[
2S1

(
N

2
+1

)
+2S1

(
N

2
+2

)
+4

]
=

λ

8π2

[
2S1

(
N

2
+1

)
+

4

N+4
+4

]
, (4.3)

where g2 = λ/(8π2) = g2
YMNc/(8π

2) is the scaled ’t Hooft coupling, fixed in the planar

Nc → ∞ limit. This result is in agreement with the analysis of maximal helicity 3 gluon

operators in QCD [60] and identifies the module V2,N with the one containing the consid-

ered operators. The second expression in (4.3) fully reveals the violation of the maximum

transcendentality principle [57], a novel feature of the gauge sector already discussed in [26].

4.1 Long-range Bethe equations

The long-range (asymptotic) Bethe equations for the full psu(2, 2|4) theory have been

formulated in [5] in 4 equivalent forms. The most convenient one has the following degree

assignment for the module V2,N

n�@ n n�@
N + 3

n
+1

N + 4

n�@
N + 2

n

1

n�@ (4.4)

A detailed description of the perturbative solution of the associated Bethe equation has

already been illustrated in [26]. The only new ingredient at four loops is the dressing phase

which we have taken from [16]. It gives a contribution which in the notation of that paper

can be written

γ4 = γno dressing
4 + β γdressing

4 . (4.5)

The correct value is β = ζ3. As we shall discuss, the dressing contribution is separately

reciprocity respecting, precisely as it happens in the case of twist-3 operators built with

scalar fields [25]. Therefore, we shall keep it separate in the following discussion.
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4.2 Three loop results

The results obtained in [26] at three loops can be summarized in the following closed

expressions

γ1 = 4S1 +
2

n+ 1
+ 4, (4.6)

γ2 = −2S3 − 4S1 S2 −
2S2

n+ 1
−

2S1

(n+ 1)2
−

2

(n+ 1)3
+ (4.7)

−4S2 −
2

(n + 1)2
− 8,

γ3 = +5S5 + 6S2 S3 − 4S2,3 + 4S4,1 − 8S3,1,1 (4.8)

+
(
4S2

2 + 2S4 + 8S3,1

)
S1

+
−S4 + 4S2,2 + 4S3,1

n+ 1
+

4S1 S2 + S3

(n+ 1)2
+

2S2
1 + 3S2

(n+ 1)3

+
6S1

(n+ 1)4
+

4

(n+ 1)5

−2S4 + 8S2,2 + 8S3,1

+
4S2

(n+ 1)2
+

4S1

(n+ 1)3
+

6

(n+ 1)4

+8S2 + 32,

where n = N
2 + 1 and Sa ≡ Sa(n) are nested harmonic sums (see appendix B).

4.3 Some structural properties

Before attacking the problem of deriving a four loop expression for the anomalous dimen-

sion, it is convenient to pause and illustrate some structural properties of the three loop

result. The general form of γn obeys at three loops the generalized KLOV structure

γn =

2 n−1∑

τ=0

γ(τ)
n , (4.9)

γ(τ)
n =

∑

k+ℓ=τ

Hτ,ℓ(n)

(n+ 1)k
,

where Hτ,ℓ(n) is a combination of harmonic sums with homogeneous fixed transcendentality

ℓ. The terms with k = 0 have maximum transcendentality , all the others have subleading

transcendentality . Some structural properties that emerge are the following.

1. sl(2) limit. The maximum transcendentality terms without 1/(n+1) factors are those

already computed in the sector with L = 3 and scalar fields [23, 22]

H2 n−1,2n−1 = identical to L = 3, s = 1/2 sector. (4.10)

2. Minimal transcendentality 1 terms. With the exception of γ1 we have

γ(1)
n = 0. (4.11)
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3. Inheritance. Write the maximum transcendentality H2 n−1,2n−1(n) in the canonical

basis of harmonic functions (see appendix B). Consider the expression

1

2
[H2 n−1,2 n−1(n) + H2 n−1,2 n−1(n+ 1)] , (4.12)

and expand the second term using recursively the relations

Sa,b(n+ 1) −→
ρ

(n+ 1)a
Sb(n + 1) + Sa,b(n), (4.13)

where ρ is an auxiliary counting variable. When the process of expansion is completed

we have

1

2
[H2 n−1,2 n−1(n) + H2 n−1,2 n−1(n+ 1)] = H2 n−1,2n−1(n) (4.14)

+
∑

|a|+k=2n−1

Pa,k(ρ)
Sa(n)

(n + 1)k
,

where

a = {a1, . . . , ap} −→ |a| = a1 + · · · + ap, (4.15)

and Pa,k(ρ) is a polynomial. Then, we have

γ(2 n−1)
n = H2 n−1,2 n−1(n) +

∑

|a|+k=2n−1

P
a,k(ρ) linear

Sa(n)

(n+ 1)k
(4.16)

+
∑

|a|+k=2n−1

P
a,k(ρ) nonlinear

ca,k
Sa(n)

(n+ 1)k
,

where ca,k are undetermined constants. This inheritance principle fixes many of the

maximum transcendentality terms of γn. The terms with undetermined coefficients

are in any case a subset of all the possible terms.

Let us illustrate two examples of the inheritance property. At one-loop, we start from

the sl(2) result

γ
sl(2)
1 = 4S1, (4.17)

and consider the sum
1

2
[4S1(n) + 4S1(n + 1)] . (4.18)

Expanding using the rule eq. (4.13), we find

4S1(n) +
2 ρ

n+ 1
. (4.19)

Thus, inheritance fully predicts the transcendentality 1 terms

4S1(n) +
2

n+ 1
, (4.20)
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in agreement with eq. (4.6).

At two loops, we start from the sl(2) result that we write in canonical form

γ
sl(2)
2 = −2S3 − 4S1 S3 = −4S1,2 − 4S2,1 + 2S3, (4.21)

and consider the sum

1

2
[−4S1,2(n) − 4S2,1(n) + 2S3(n) − 4S1,2(n+ 1) − 4S2,1(n+ 1) + 2S3(n+ 1)] . (4.22)

This gives back the sl(2) result computed at n plus various induced terms that are

−
2 ρ

n+ 1
S2(n) −

2 ρ

(n + 1)2
S1(n) + ρ(1 − 4 ρ)

1

(n + 1)3
. (4.23)

The prediction from inheritance is now

−
2

n+ 1
S2(n) −

2

(n+ 1)2
S1(n) +

c

(n+ 1)3
, (4.24)

where c is an undetermined constant. Without resorting to the inheritance property, we

should have needed four coefficients for the possible allowed terms

S2

n+ 1
,

S1,1

n+ 1
,

S1

(n+ 1)2
,

1

(n+ 1)3
. (4.25)

5. The four loop anomalous dimension

We have computed a long list of values of γ4(n) as exact rational numbers obtained from

the perturbative expansion of the long-range Bethe equations. We have matched them

against the general Ansatz eq. (4.9). A very large number of possible terms appear with

unknown coefficients. To reduce them, we have imposed the inheritance property described

in section (4.3) as well as the condition eq. (4.11). The resulting reduced Ansatz matches

the list {γ4(n)} with rather simple integer coefficient. Our list is longer than the number

of coefficients and we checked that it is perfectly reproduced. Also, we extended the list to

even larger values of n where we only have a (very long) decimal approximation to γ4(n)

again in agreement with the solution found.

We use the notation of eq. (4.9) to present our result. We begin with the non-dressing

contributions to γ4. The terms with maximal transcendentality are

H7,7 =
S7

2
+7S1,6+15S2,5−5S3,4−29S4,3−21S5,2−5S6,1−40S1,1,5−32S1,2,4+24S1,3,3+

+32S1,4,2−32S2,1,4+20S2,2,3+40S2,3,2+4S2,4,1+24S3,1,3+44S3,2,2+24S3,3,1+

+36S4,1,2+36S4,2,1+24S5,1,1+80S1,1,1,4−16S1,1,3,2+32S1,1,4,1−24S1,2,2,2+16S1,2,3,1

−24S1,3,1,2−24S1,3,2,1−24S1,4,1,1−24S2,1,2,2+16S2,1,3,1−24S2,2,1,2−24S2,2,2,1+

−24S2,3,1,1 − 24S3,1,1,2 − 24S3,1,2,1 − 24S3,2,1,1 − 24S4,1,1,1 − 64S1,1,1,3,1,

H7,6 =
7S6

2
−20S1,5−16S2,4+12S3,3+16S4,2+40S1,1,4−8S1,3,2+16S1,4,1−12S2,2,2+8S2,3,1

−12S3,1,2 − 12S3,2,1 − 12S4,1,1 − 32S1,1,3,1,
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H7,5 = −
15S5

2
+ 14S1,4 + 10S2,3 + 14S3,2 + 14S4,1 − 12S1,2,2 − 16S1,3,1 − 12S2,1,2 +

−12S2,2,1 − 12S3,1,1,

H7,4 = −
3S4

2
+ 12S1,3 + 4S2,2 + 4S3,1 − 12S1,1,2 − 12S1,2,1 − 12S2,1,1,

H7,3 = 11S3 − 9S1,2 − 9S2,1 − 12S1,1,1,

H7,2 = 4S2 − 24S1,1,

H7,1 = −
39S1

2
,

H7,0 = −
39

4
. (5.1)

The other terms with lower transcendentality read

H6,6 = 7S6−40S1,5−32S2,4+24S3,3+32S4,2+80S1,1,4−16S1,3,2+32S1,4,1−24S2,2,2+

+16S2,3,1 − 24S3,1,2 − 24S3,2,1 − 24S4,1,1 − 64S1,1,3,1,

H6,5 = −20S5 + 40S1,4 − 8S3,2 + 16S4,1 − 32S1,3,1,

H6,4 = 10S4 + 4S1,3 − 12S2,2 − 12S3,1,

H6,3 = 14S3 − 12S1,2 − 12S2,1,

H6,2 = −9S2 − 12S1,1,

H6,1 = −22S1,

H6,0 = −
37

2
,

H5,5 = −20S5 + 40S1,4 − 8S3,2 + 16S4,1 − 32S1,3,1,

H5,4 = 20S4 − 16S3,1,

H5,3 = 4S3,

H5,2 = −4S2,

H5,1 = 0,

H5,0 = −2,

H4,4 = 20S4 − 16S2,2 − 32S3,1,

H4,3 = 0,

H4,2 = −4S2,

H4,1 = −8S1,

H4,0 = 2,

H3,1 = −8S1,

H3,0 = 4,

H2,2 = −32S2,

H2,1 = 0,

H2,0 = 8,

H0,0 = −160. (5.2)

– 14 –



J
H
E
P
0
6
(
2
0
0
8
)
0
7
7

Finally, the dressing contribution reads

γdressing
4 = −8S3 S1 −

8S1

(n+ 1)2
−

4S1

(n + 1)3
−

4S3

n+ 1
− 8S3 +

−
8

(n+ 1)2
−

8

(n+ 1)3
−

2

(n + 1)4
, (5.3)

and, multiplied by ζ3, consistently shows the proper generalized transcendentality .

It is not difficult to immediately check that the correct universal cusp anomalous

dimension Γcusp(g) at four loops is reproduced by the leading large N expansion of the

formulas above. While all the terms with 1/(n + 1) factors are suppressed in the large

N limit, those with maximum transcendentality and without those factors are in fact the

same as in the L = 3 scalar sector, where it has been already checked [23] that

γno dressing
4 + ζ3 γ

dressing
4 = −

(
73π6

630
+ 4ζ2

3

)
logN + O(N0), at N → ∞. (5.4)

6. Proof of reciprocity

This section contains the complete proof of reciprocity of the four loop anomalous dimen-

sion. It is organized as follows. In section 6.1 we derive the correct reciprocity in Mellin

x-space for this sector. In section 6.2 we present some useful technical result. In sec-

tion 6.3 we illustrate a reduction algorithm to write explicitly and in an automatic way the

separately reciprocity respecting structures. Finally, in section 6.4 we collect the results.

6.1 Reciprocity condition from Mellin transformation

The quadratic Casimir is

J2 = N2 + 8N +
63

4
= 4n(n + 2) +

15

4
. (6.1)

The effective J2 can be defined as

J2 def
= n (n+ 2). (6.2)

Let us consider now the Mellin transformation of a function which is expressed as depending

on n

f(n) =

∫ 1

0

dz

z
zn F (z), (6.3)

Let us define

z = e−λ x, λ =
(
J2 + 1

)−1/2
=

1

n+ 1
, (6.4)

and write

f(n) = λ

∫ ∞

0
dx e−x eλ x F (e−λ x). (6.5)

The absence of half-integer powers of J2 at large n is equivalent to the requirement that

the integrand is locally odd under λ→ −λ in a neighborhood of λ = 0. This gives

eλ x F (e−λ x) = −e−λ x F (eλ x), (6.6)
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or

F (z) = −z2 F (z−1). (6.7)

From this, a useful theorem follows

Theorem 1. Let f(n) be reciprocal with respect to J2 = n(n+ 1). Then, the combination

f̃(n) = f(n) + f(n+ 1), (6.8)

is reciprocal with respect to J2 = n(n+ 2).

Proof. We simply write

f̃(n) = f(n) + f(n+ 1) =

∫ 1

0

dz

z
zn F (z) +

∫ 1

0

dz

z
zn+1 F (z) = (6.9)

=

∫ 1

0

dz

z
zn (z + 1)F (z), (6.10)

which means

F̃ (z) = (z + 1)F (z). (6.11)

Using now F (z) = −z F (1/z) we find

F̃ (z) = (z + 1)F (z) = −z (z + 1)F (1/z) = −z2 F̃ (1/z). (6.12)

�

This theorem can be used as follows. We compute the four loop function P(N) and

express it in terms of n = N
2 + 1. Then we rewrite it using symmetric combinations of

harmonic terms which are reciprocal with respect to n(n + 1). These have been classified

and listed in [25]. The next section summarizes what we need.

6.2 Reciprocity respecting combinations with respect to n(n+ 1)

Let us consider the following linear map defined on linear combinations of simple S sums

by

Φa(Sb,c) = Sa,b,c −
1

2
Sa+b,c. (6.13)

Define also

Ia = Sa, (6.14)

Ia1,a2,...,an = Φa1
(Φa2

(· · · Φan−1
(San) · · · ). (6.15)

For instance,

Ia,b = Sa,b −
1

2
Sa+b. (6.16)

Then, we have the following important result

Theorem 2 ([25]). The combinations Ia1,...,an with odd a1, . . . , an have a large N reciprocity

respecting expansion

Ia1,...,an =
∞∑

ℓ=0

Pℓ(log J
2)

J2ℓ
, (6.17)

where J2 = N(N + 1) and Pℓ is a polynomial.
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6.3 Reduction algorithm

The general strategy to prove reciprocity is as follows. Let us consider a nested harmonic

sum Sa(n) with a = (a1, . . . , ak) and all ai odd. The sum Sa(n) is the unique maximal depth

term appearing in the expansion of the invariant Ia defined in section (6.2). Examples are:

I1,3 = S1,3 −
1

2
S4, (6.18)

I1,1,3 = S1,1,3 −
1

2
S2,3 −

1

2
S1,4 +

1

4
S5.

This means that we can write

Sa(n) = Ia(n) +Ra(n), depth(Ra) < k. (6.19)

From theorem 2, we know that Ia(n) is reciprocity respecting with respect to the combi-

nation n (n+ 1). We then write

Sa(n) =
Ia(n) + Ia(n+ 1)

2
+
Ia(n) − Ia(n+ 1)

2
+Ra(n). (6.20)

We rename the first term

Ĩa(n) = Ia(n) + Ia(n+ 1), (6.21)

and we know from theorem 1 that it is reciprocity respecting with respect to the combi-

nation n (n + 2). Both the remaining two terms in eq. (6.20) have depth strictly smaller

than k. For example

S1,3(n) =
1

2
Ĩ1,3 −

1

2

S3(n)

n+ 1
+

1

2
S4(n) −

1

4

1

(n+ 1)4
. (6.22)

The algorithm can now be iteratively applied to the generated terms of depth k − 1.

This strategy can be used to prove reciprocity (with respect to n (n+ 2)) of a generic

linear combination of products of nested harmonic sums with possible (n+1)−p factors. To

this aim, we first combine all products of nested harmonic sums using the general shuffle

algebra relation eq. (B.10). Then the algorithm is applied up to depth 0. The final result is

a combination of invariants Ĩa and factors (n+ 1)−p. If all the indices in the invariants Ĩa
are odd and all the exponents p are even, the initial expression is automatically reciprocity

respecting with respect to n (n+ 2). The constraint on p is due to the relation

n+ 1 =
√
n (n+ 2) + 1. (6.23)

6.4 Results for P at four loops

The P function reads at four loops and in terms of n = N
2 + 1 (∂ ≡ ∂n)

P(n) =

∞∑

k=1

1

k!

(
−

1

4
∂

)k−1

[γ(n)]k = (6.24)

= γ −
1

8
(γ2)′ +

1

96
(γ3)′′ −

1

1536
(γ4)′′′ + · · · .
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Replacing the perturbative expansions

P =

∞∑

k=1

Pk g
2 k, γ =

∞∑

k=1

γk g
2 k, (6.25)

we find

P1 = γ1, (6.26)

P2 = γ2 −
1

8

(
γ2
1

)′
, (6.27)

P3 = γ3 −
1

4
(γ1 γ2)

′ +
1

96

(
γ3
1

)′′
, (6.28)

P4 = γ4 −
1

8

(
γ2
2 + 2 γ1 γ3

)′
+

1

32

(
γ2
1 γ2

)′′
−

1

1536

(
γ4
1

)′′′
. (6.29)

These expressions can be computed taking derivatives using the results of section (B.4).

Applying the algorithm for the reduction to invariants we find immediately the one-loop

result in manifestly reciprocity respecting form

P1 = 2 Ĩ1 + 4. (6.30)

At two loops, the same calculation gives

P2 = − Ĩ3 −
1

3
π2 Ĩ1 − 8 −

2π2

3
. (6.31)

At three loops, we obtain the result

P3 =
Ĩ3

2(n + 1)2
+

3 Ĩ5
2

− 4 Ĩ1,1,3 +
2

(n+ 1)4
− 4 Ĩ1,3 +

π2 Ĩ3
6

+

−2 Ĩ3 + 4 Ĩ1,1ζ3 −
ζ3

(n + 1)2
−

4

(n+ 1)2
+ 4ζ3 Ĩ1 +

4π4 Ĩ1
45

+

+4ζ3 +
8π4

45
+

4π2

3
+ 32. (6.32)

Factors 1/(n+1) with even exponent appear and do not spoil reciprocity as discussed above.

The non-dressing four loop result is rather long but can be obtained in a straightforward

way in the reciprocity respecting form

Pno dressing
4 = −

3 Ĩ1
4(n + 1)6

−
Ĩ3

(n+ 1)4
−

Ĩ5
(n+ 1)2

−
13 Ĩ7

4
+ 8 Ĩ1,1,5 +

4 Ĩ1,3,1

(n+ 1)2
+ 4 Ĩ1,3,3 +

+4 Ĩ1,5,1 + 4 Ĩ3,1,3 + 4 Ĩ3,3,1 − 32 Ĩ1,1,1,3,1 +
2 Ĩ1,3

(n+ 1)2
+ 8 Ĩ1,5 +

+
6 Ĩ3,1

(n+ 1)2
+ 4 Ĩ3,3 + 4 Ĩ5,1 − 32 Ĩ1,1,3,1 −

13

2(n + 1)6
+

4 Ĩ1
(n+ 1)4

+

+
2 Ĩ3

(n+ 1)2
−

π2 Ĩ3
12(n + 1)2

−
π2 Ĩ5

4
+ 4 Ĩ5 +

2

3
π2 Ĩ1,1,3 − 16 Ĩ1,3,1 +
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−2ζ3 Ĩ1,3 +
2

3
π2 Ĩ1,3 + 8 Ĩ1,3 − 8 Ĩ3,1 − 2 Ĩ3,1ζ3 +

+
ζ3

(n+1)4
+

4

(n+1)4
−

π2

3(n+1)4
−

4Ĩ1
(n+1)2

−
π4Ĩ1

30(n+1)2
−
π4Ĩ3
15

+
π2Ĩ3

3
+8Ĩ3+

+
4

15
π4 Ĩ1,1,1 − 2 Ĩ3ζ3 −

2

3
π2ζ3 Ĩ1,1 − 32ζ5 Ĩ1,1 +

4

15
π4 Ĩ1,1 +

+
π2ζ3

6(n+1)2
+

8ζ5
(n+1)2

+
24

(n+1)2
−

π4

15(n+1)2
+

2π2

3(n+1)2
−

2

3
π2ζ3Ĩ1−8ζ3Ĩ1+

−32ζ5Ĩ1−
7π6Ĩ1
270

+
2π4Ĩ1
15

−
2

3
π2ζ3−16ζ3−32ζ5−

7π6

135
−

4π4

15
−

16π2

3
−160. (6.33)

Notice that we did not attempt to rearrange it in any minimal form.

Finally, the dressing contribution reads

Pdressing
4 = −4 Ĩ1,3 − 4 Ĩ3,1 − 4 Ĩ3 − 4

Ĩ1
(n+ 1)2

−
8

(n+ 1)2
+

2

(n + 1)4
(6.34)

and, as anticipated, is separately reciprocity respecting.

As a consequence of reciprocity, it is possible to analyze the large N expansion of the

four loop anomalous dimension and of P in view of the MVV relations. This is a technical

issue which is presented in appendix A.

7. Reciprocity and wrapping

We have presented our multi-loop result and its analysis without much worry about possible

wrapping problems. In this brief section, we make a few remarks about this important issue.

It is well-known that the long-range Bethe Ansatz equations are only asymptotic [5].

The length of the chain (and thus of the operator) is assumed to exceed the range of the

interaction (and thus the order in perturbation theory), reaching the asymptotic condi-

tions by which the S-matrix can be defined according to the perturbative Bethe Ansatz

technique [7].

If the interaction range of the dilatation operator reaches or exceeds the length of the

operator under study, the Bethe ansatz might break down [61, 62, 22]. In special subsectors,

as su(2), higher order expressions of the dilatation operator are known and this issue can

be checked in full details [63, 64]. In other cases, like in the sl(2) sector, supersymmetry

can be invoked to explain special delays of the wrapping phenomenon [7].

In our calculation, such tools are not (yet) available and we cannot prove nor exclude

wrapping effects at 3 or 4 loops.3 What we have proved rigorously is that the asymptotic

Bethe Ansatz predicts a result which is reciprocity respecting. We believe that this is an

interesting result per se, pointing toward hidden properties of the Bethe equations. Besides,

we emphasize that it would be incorrect to believe that a reciprocity respecting result means

that wrapping effects are absent. If one believes that reciprocity is a physically meaningful

3The two loop case seem reasonably safe for length 3 states, in that interactions are still only between

next-to-nearest neighbors.
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property, it could simply be that the (yet to be quantified) wrapping-correction is also

reciprocity respecting.

As a sort of example of this phenomenon we can exhibit a case where the asymptotic

Bethe Ansatz provides a result which is certainly wrong, i.e. misses the wrapping contri-

butions, but nevertheless is reciprocity respecting. This is the four loop prediction for the

Konishi operator reported in [22] and known to violate the BFKL equation as well as both

of the recent (not coinciding) field theoretical calculations [65, 66].

For the first three loops, it has been proved that the P function satisfies reciprocity in

all orders [42]. In terms of a series expansion in 1/J2 and for the first few orders, it reads4

P1 = 4 log J +
2

3

1

J2
−

2

15

1

J4
+ O

(
1

J6

)
, (7.1)

P2 = −
2

3
π2 log J − 6ζ3 +

(
2 −

π2

9

)
1

J2
+

(
1 +

π2

45

)
1

J4
+ O

(
1

J6

)
, (7.2)

P3 =
11

45
π4 log J +

2

3
π2ζ3 + 20ζ5 +

(
11π4

270
−

2

3
π2 log J

)
1

J2

−

[
2 +

7π2

9
+

11π4

1350
− 2

(
3 +

π2

3

)
log J

]
1

J4
+ O

(
1

J6

)
. (7.3)

At four loops, starting from [22], we derived a series expansion for P4 that reads

P4 = −

(
73π6

630
+ 4ζ2

3

)
log J −

7

30
π4ζ3 −

5

3
π2ζ5 −

175

2
ζ7

−

[
π4

30
+

73π6

3780
− π2ζ3 +

2ζ2
3

3
−

(
7π4

15
+ 4ζ3

)
log J + 8ζ3 log2 J

]
1

J2

+

[
1

2
−
π2

2
+

71π4

180
+

73π6

18900
−

(
π2 +

25

3

)
ζ3 +

2ζ2
3

15
−

(
π2 +

7π4

15
+

26ζ3
3

)
log J

+4

(
π2

3
+ 2ζ3

)
log2 J + 8 log3 J

]
1

J4
+ O

(
1

J6

)
(7.4)

Only integer negative powers of J2 appear (even extending the series by many orders)

proving (empirically) that reciprocity holds.

8. Conclusions

We have considered a special class of scaling composite operators in N = 4 SYM which

at one-loop admits a simple description as gluonic quasipartonic twist operators. We have

been able to compute their anomalous dimension at 4 loops in the framework of the asymp-

totic long-range Bethe Ansatz. This has been possible by formulating a suitable generalized

transcendentality principle leading to an inspired Ansatz in terms of nested harmonic sums.

The main test of our result has been to show that it respects the generalized Gribov-Lipatov

reciprocity recently discovered in other sectors for the Dokshizter-Marchesini-Salam evolu-

tion kernel.

4Notice that the notation adopted in [22], in which g2 = λ

16π2
, differs from the one used here.
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Going back to our initial motivations, we see that the large spin analysis of twist

operators is indeed rich and somewhat surprising. The general structure of the expansion

has a well understood leading logarithmic term which can be resummed in terms of the

physical coupling governing soft radiation effects. The physical coupling must emerge in a

universal way in all conformal sectors (scalars, gauginos or gauge fields) and, presumably,

for all twists (with positive checks in the L = 2, 3,∞ cases). The mechanism is also clear

on the AdS side, as explained for instance in [32] and in the recent analysis [67, 68, 39],

although a better identification of the string solution dual to the minimal gluonic operator

would be welcome. Indeed, It is known that anomalous dimensions of operators with

twist higher than two occupy a band [32], whose lower bound is the one of interest in this

paper. The spiky strings proposed in [67] are dual to higher twist operators with maximal

anomalous dimension. In addition, a more general problem of identification follows from

the fact that the field strength does not carry R-charge. While it is natural to guess that

operators built out of many covariant derivatives and field strength components should

correspond to strings stretched in AdS having large spin, it is not clear how one could

distinguish between scalars, fermions or the field strength without the guidance from some

extra charge easily visible on both sides of the AdS/CFT.

On the other hand, the constraints on the subleading terms at large N implied by

reciprocity have a much less clear origin. In particular, it seems that a general reciprocity

proof is missing in the gauge theory. Indeed, we have found empirically that reciprocity

holds in many cases with various conformal spins and twists, but the details of the derivation

are drastically non-universal. The reason is that the reciprocity proofs heavily rely on the

detailed (closed) form of the spin dependent anomalous dimensions. Unfortunately, we

miss a unifying principle treating uniformly the various known cases. Also, what is the

dual counterpart of reciprocity? In [37], reciprocity is tested at strong coupling for the

semiclassical string configuration dual to the minimal anomalous dimension sl(2) twist-

L operator. This is the folded string rotating with angular momentum N on AdS3 and

with center of mass moving with angular momentum L on a big circle of S5 [69, 70]. An

extension to string states dual to other reciprocity respecting gauge theory operators would

certainly be welcome.

As a final comment, we emphasize that the observed four loop reciprocity for gauge

operators must still pass the test of wrapping effects, as discussed in section (7). Nev-

ertheless, it certainly suggests some important structure built in the Bethe Ansatz and

deserving a deeper understanding. As we learn from the twist-2 QCD lesson, the attempts

to extend at higher loop orders the Gribov-Lipatov relation led to the discovery of the DMS

reciprocity respecting kernel. This innovative rewriting of parton evolution revealed new

relations between space and time-like anomalous dimensions. In perspective, we believe

that the observation of an intrinsic reciprocity in the asymptotic Bethe Ansatz equations

of N = 4 SYM should not be regarded as a mere technical feature. Instead, it could be a

starting point to constrain the still elusive wrapping corrections.
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A. Large N expansions and reciprocity

¿From reciprocity of P one immediately proves that (basically) half of the terms in γ are

truly independent in the spirit of the MVV constraints. This is discussed in [37] that

we now follow. The relation between γ and P can be formally solved by means of the

Lagrange-Bürmann formula leading to

γ(N) =
∞∑

k=1

1

k!

(
1

2

∂

∂N

)k−1

[P(N)]k, (A.1)

P(N) =
∞∑

k=1

1

k!

(
−

1

2

∂

∂N

)k−1

[γ(N)]k. (A.2)

If we separate

γ(N) = γ+(N) + γ−(N), (A.3)

with

γ+(N) =
∞∑

k=0

1

(2 k + 1)!

(
1

2
∂

)2 k

[P(N)]2 k+1, (A.4)

γ−(N) =
∞∑

k=1

1

(2 k)!

(
1

2
∂

)2 k−1

[P(N)]2 k, (A.5)

then it can be shown that a reciprocity respecting kernel leads to the constraint

γ− =
1

4
(γ2

+)′ +
1

48

(
−γ+(γ3

+)′′ +
1

4
(γ4

+)′′
)′

+ · · · . (A.6)

Expanding in loops, we find

γ−,1 = 0, (A.7)

γ−,2 =
1

4
(γ2

+,1)
′, (A.8)

γ−,3 =
1

2
(γ+,1 γ+,2)

′, (A.9)

γ−,4 =
1

4
(γ2

+,2 + 2 γ+,1 γ+,3)
′ +

1

48

(
−γ+,1(γ

3
+,1)

′′ +
1

4
(γ4

+,1)
′′

)′

. (A.10)

However, these relations are of little practical use. They are completely equivalent to

MVV relations that are more transparent since directly connect specific terms in the large

N expansion of γ. To this aim it is convenient to rewrite the most difficult γ4 piece in

terms of S1 and harmonic sums which are convergent as N → ∞.
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A.1 Reversed form of γ4, suitable for the large N expansion

Using the shuffle algebra we rewrite the maximal transcendentality term in γno dressing
4 as

H7,7 =
40

3
S4S

3
1−

32

3
S3,1S

3
1 +20S5S

2
1−40S3,2S

2
1−56S4,1S

2
1 +64S3,1,1S

2
1−4S3

2S1+32S2
3S1+

−4S2S4S1+39S6S1+88S2S3,1S1−64S4,2S1+48S5,1S1−104S2,3,1S1+120S4,1,1S1+

−192S3,1,1,1S1−2S2
2S3−

289S3S4

3
−S2S5−

189S7

2
−

256

3
S3S3,1−4S2S3,2+60S2S4,1+

+136S4,3−24S5,2−32S6,1−64S2,4,1−120S2S3,1,1+64S3,2,2+80S3,3,1−80S5,1,1+

+128S2,3,1,1 − 128S4,1,1,1 + 256S3,1,1,1,1,

H7,6 = −2S3
2−2S4S2+44S3,1S2+16S2

3 +20S2
1S4+20S1S5+

39S6

2
−16S2

1S3,1−40S1S3,2+

−56S1S4,1 − 32S4,2 + 24S5,1 − 52S2,3,1 + 64S1S3,1,1 + 60S4,1,1 − 96S3,1,1,1,

H7,5 = −6S1S
2
2 − 2S3S2 + 8S1S4 +

9S5

2
− 16S1S3,1 − 12S3,2 − 16S4,1 + 20S3,1,1,

H7,4 = −6S2S
2
1 − 4S2

2 +
S4

2
− 8S3,1,

H7,3 = −2S3
1 − 15S2S1 − 2S3,

H7,2 = −12S2
1 − 8S2,

H7,1 = −
39S1

2
,

H7,0 = −
39

4
. (A.11)

The other pieces of γno dressing
4 are

H6,6 = −4S3
2−4S4S2+88S3,1S2+32S2

3 +40S2
1S4+40S1S5+39S6−32S2

1S3,1−80S1S3,2+

−112S1S4,1 − 64S4,2 + 48S5,1 − 104S2,3,1 + 128S1S3,1,1 + 120S4,1,1 − 192S3,1,1,1,

H6,5 = 40S1S4 + 20S5 − 32S1S3,1 − 40S3,2 − 56S4,1 + 64S3,1,1,

H6,4 = −6S2
2 + 4S1S3 + 8S4 − 16S3,1,

H6,3 = 2S3 − 12S1S2,

H6,2 = −6S2
1 − 15S2,

H6,1 = −22S1,

H6,0 = −
37

2
,

H5,5 = 40S1S4 + 20S5 − 32S1S3,1 − 40S3,2 − 56S4,1 + 64S3,1,1,

H5,4 = 20S4 − 16S3,1,

H5,3 = 4S3,

H5,2 = −4S2,

H5,1 = 0,

H5,0 = −2,
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H4,4 = −8S2
2 + 12S4 − 32S3,1,

H4,3 = 0,

H4,2 = −4S2,

H4,1 = −8S1,

H4,0 = 2,

H3,1 = −8S1,

H3,0 = 4,

H2,2 = −32S2,

H2,1 = 0,

H2,0 = 8,

H0,0 = −160. (A.12)

A.2 Large N expansion of γ

Starting from this form of γ4 we can easily compute the large N expansion by expanding

each nested sum starting from the most inner index. The procedure is described in full

details in the appendix of [23]. We always write the results in terms of n = N
2 + 1 and also

define n = n eγE . The one-loop result is

γ1 = (4 log n+4)+
4

n
−

7

3

(
1

n

)2

+2

(
1

n

)3

−
59

30

(
1

n

)4

+2

(
1

n

)5

−
127

63

(
1

n

)6

+· · · . (A.13)

The two loop results has single logarithms in all terms

γ2 =

(
−

2π2 log n

3
−2ζ3−

2π2

3
−8

)
+

4 log n− 2π2

3 +4

n
+

(
−4 log n+

7π2

18
+1

)(
1

n

)2

+

+

(
14 log n

3
−
π2

3
−

11

3

)(
1

n

)3

+

(
−6 log n+

59π2

180
+

13

2

)(
1

n

)4

+

+

(
118 log n

15
−
π2

3
−

487

45

)(
1

n

)5

+

(
−10 log n+

127π2

378
+

35

2

)(
1

n

)6

+ · · · . (A.14)

At three loops, we find quadratic logarithms starting from the 1/n2 term

γ3 =

(
11π4 log n

45
+
π2ζ3

3
−ζ5+

11π4

45
+

4π2

3
+32

)
+

−4π2 log n
3 − 2ζ3 + 11π4

45 − 4π2

3 − 8

n
+

+

(
−2 log2 n+

4π2 log n

3
+ 2ζ3 −

77π4

540
−
π2

6
+ 7

)(
1

n

)2

+ (A.15)

+

(
4 log2 n+

(
−6 −

14π2

9

)
log n−

7ζ3
3

+
11π4

90
+

8π2

9
−

25

3

)(
1

n

)3

+

+

(
−7 log2 n+

(
47

3
+ 2π2

)
log n+ 3ζ3 −

649π4

5400
−

19π2

12
+

227

24

)(
1

n

)4

+

+

(
12 log2 n+

(
−32 −

118π2

45

)
log n−

59ζ3
15

+
11π4

90
+

352π2

135
−

181

15

)(
1

n

)5

+

+

(
−

59 log2 n

3
+

(
2789

45
+

10π2

3

)
log n+5ζ3−

1397π4

11340
−

151π2

36
+

4033

270

)(
1

n

)6

+ · · · .
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The non-dressing four loops anomalous dimension has a quadratic logarithm in the 1/n2

term and cubic logarithms in all the subsequent ones. It reads

γno dressing
4 =

(
4ζ2

3−
2π4ζ3

15
+log n

(
4ζ2

3−
73π6

630

)
+
π2ζ5

6
+

55ζ7
2

−
73π6

630
−

8π4

15
−

16π2

3
−160

)
+

+
4ζ2

3 + 2π2ζ3
3 − ζ5 −

73π6

630 + 3 log nπ4

5 + 3π4

5 + 8π2

3 + 32

n
+

+

(
π2 log2 n+

(
4ζ3 −

3π4

5
+ 4

)
log n−

7ζ2
3

3
−

2π2ζ3
3

+ 2ζ3 + ζ5

+
73π6

1080
+
π4

15
−

19π2

6
− 12

) (
1

n

)2

+

(
4 log3 n

3
+

(
−2 − 2π2

)
log2 n

+

(
−8ζ3 +

7π4

10
+

8π2

3
− 6

)
log n+ 2ζ2

3 +
7π2ζ3

9
+ ζ3 −

7ζ5
6

−
73π6

1260

−
23π4

60
+

40π2

9
+

23

3

)(
1

n

)3

+

(
−4 log3 n+

(
13 +

7π2

2

)
log2 n

+

(
12ζ3−

9π4

10
−

41π2

6
+

47

4

)
log n−

59ζ2
3

30
−π2ζ3−8ζ3+

3ζ5
2

+
4307π6

75600

+
41π4

60
−

83π2

16
−

65

4

)(
1

n

)4

+ · · · . (A.16)

Finally, the dressing part has the expansion

γdressing
4 = (−8 log nζ3 − 8ζ3)−

8ζ3
n

+

(
−4 log n+

14ζ3
3

−4

)(
1

n

)2

+(8 log n−4ζ3+4)

(
1

n

)3

+

(
−10 log n+

59ζ3
15

+
1

3

)(
1

n

)4

+ · · · . (A.17)

A.3 MVV-like relations

For simplicity we set γE → 0, which does no loose information since all logarithms have as

a natural argument the combination n = nγE . We write the general expansion of γ as

γ(n) = L0,1 log n+ c0 +
L1,1 log n+ c1

n
+
L2,2 log2 n+ L2,1 log n+ c2

n2
+

+
L3,3 log3 n+ L3,2 log2 n+ L3,1 log n+ c3

n3
+ O

(
log3 n

n4

)
, (A.18)

where Lij and ci are functions of the coupling.

The most general expansion of a reciprocity respecting P(N) compatible with the large

N expansion of γ is

P(N) = p0,1 log
N(N + 8)

4
+ b0 +

p1,2 log2 N(N+8)
4 + p1,1 log N(N+8)

4 + b1

N(N + 8)
+ O

(
log3N

N4

)
.

(A.19)

Matching the above two expansions in the relation

γ(n) = P

(
N +

1

2
γ(n)

)
, n =

N

2
+ 1, (A.20)
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we determine all the coefficients in the expansion of P and also find a set of constraints

on the coefficients of the expansion of γ. These constraints give all the terms of the form

(log n)p/n2 q+1 in terms of those of the form (log n)p/n2 q. The precise relations are the

following lowest order MVV relations

L1,1 =
L2

0,1

4
, (A.21)

c1 =
1

4
c0L0,1 + L0,1, (A.22)

and the successive ones

L3,3 = −
1

96
L4

0,1 −
1

2
L2,2 L0,1, (A.23)

L3,2 =
L4

0,1

32
−

1

32
c0 L

3
0,1 −

L3
0,1

8
−

1

2
L2,1 L0,1 +

3

4
L2,2 L0,1 −

1

2
c0 L2,2 − 2L2,2, (A.24)

L3,1 = −
1

64
L4

0,1+
1

16
c0L

3
0,1+

L3
0,1

4
−

1

32
c20L

2
0,1−

1

4
c0L

2
0,1−

L2
0,1

2
−

1

2
c2L0,1+

1

2
L2,1L0,1

−
1

2
c0 L2,1 − 2L2,1 +

1

2
c0 L2,2 + 2L2,2, (A.25)

c3 = −
1

96
L0,1c

3
0+

1

32
L2

0,1c
2
0−

1

8
L0,1c

2
0−

1

64
L3

0,1c0+
1

4
L2

0,1c0−
c2c0
2

−
1

2
L0,1c0+

1

4
L2,1c0

−
L3

0,1

16
+
L2

0,1

2
− 2 c2 +

1

4
c2 L0,1 −

2L0,1

3
+ L2,1 (A.26)

The explicit values of these coefficients for the canonical choice β = ζ3, i.e.

γ4 = γno dressing
4 + ζ3 γ

dressing
4 , (A.27)

are

L0,1 = 4g2 −
2π2g4

3
+

11π4g6

45
+

(
−4ζ2

3 −
73π6

630

)
g8 + · · · , (A.28)

c0 = 4g2+

(
−2ζ3−

2π2

3
−8

)
g4+

(
π2ζ3

3
−ζ5+

11π4

45
+

4π2

3
+32

)
g6+· · · , (A.29)

L1,1 = 4g4 −
4π2g6

3
+

3π4g8

5
+ · · · , (A.30)

c1 = 4g2 +

(
4 −

2π2

3

)
g4 +

(
−2ζ3 +

11π4

45
−

4π2

3
− 8

)
g6 +

+

(
−4ζ2

3 +
2π2ζ3

3
− ζ5 −

73π6

630
+

3π4

5
+

8π2

3
+ 32

)
g8 + · · · , (A.31)

L2,2 = −2g6 + π2g8 + · · · , (A.32)

L2,1 = −4g4 +
4π2g6

3
+

(
4 −

3π4

5

)
g8 + · · · , (A.33)

c2 = −
7g2

3
+

(
1 +

7π2

18

)
g4 +

(
2ζ3 −

77π4

540
−
π2

6
+ 7

)
g6 +

+

(
7ζ2

3

3
−

2π2ζ3
3

− 2ζ3 + ζ5 +
73π6

1080
+
π4

15
−

19π2

6
− 12

)
g8 + · · · , (A.34)
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L3,3 =
4g8

3
+ · · · , (A.35)

L3,2 = 4g6 +
(
−2 − 2π2

)
g8 + · · · , (A.36)

L3,1 =
14g4

3
+

(
−6 −

14π2

9

)
g6 +

(
−6 +

8π2

3
+

7π4

10

)
g8 + · · · , (A.37)

c3 = 2g2 +

(
−

11

3
−
π2

3

)
g4 +

(
−

7ζ3
3

+
11π4

90
+

8π2

9
−

25

3

)
g6 +

+

(
−2ζ2

3 +
7π2ζ3

9
+5ζ3−

7ζ5
6

−
73π6

1260
−

23π4

60
+

40π2

9
+

23

3

)
g8 + · · · (A.38)

Notice that the four loop contribution to c0 does not enter the above relations but only

higher order ones. Also, the relations are true irrespectively on β since the dressing part

is separately reciprocity respecting.

It is a straightforward exercise to check that these expressions indeed obey the MVV

relations.

A.4 Large N expansion of P

In the spirit of the analysis of [42] and [25] we present the large N expansion of P once it

is re-expanded in terms of the physical coupling g2
ph = 1

2 Γcusp which reads at 4 loops

γ = 4 g2
ph log N + O(N0), (A.39)

g2
ph = g2 −

π2

6
g4 +

11π4

180
g6 −

1

4

(
73π6

630
+ 4 ζ2

3

)
g8 + · · · . (A.40)

The reciprocity respecting kernel P can be re-expanded in the physical coupling

P =
∞∑

n=1

Pph
n g2 n

ph . (A.41)

The large n expansion at four loops reads

Pph
1 (n) = 4 log n+ 4 +

4

n
−

7

3

1

n2
+

2

n3
−

59

30

1

n4
+

2

n5
+ · · · , (A.42)

Pph
2 (n) = −8 − 2 ζ3 +

1

n2
−

2

n3
+

7

2

1

n4
−

6

n5
+ · · · , (A.43)

Pph
3 (n) = 32 −

4π2

4
−
π2

3
ζ3 − ζ5 +

(
π2

6
− 3

)
1

n2
+

(
6 −

π2

3

)
1

n3
+

+

(
−

63

8
+

7π2

12

)
1

n4
+

(
15

2
− π2

)
1

n5
+ · · · , (A.44)

Pph
4 (n) = −160+

32π2

3
−
π2

3
ζ5+

55

2
ζ7+(20−π2 − 2 ζ3−2 (2+ζ3) log n)

1

n2
+

+(−44 + 2π2 + 2 ζ3 + 4 (2 + ζ3) log n)
1

n3
+ · · · . (A.45)

Hence, we see that the large logarithmic terms are all hidden in the one-loop physical kernel.

The next logarithmic enhancement is down by two powers of n and starts at four loops.

This is in nice agreement with what is found in the twist-3 scalar operators analyzed in [25] .
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B. Some technical remarks concerning harmonic sums

We collect in this appendix some useful properties of (nested) Harmonic sums that we have

used in this paper. Very useful references are [71].

B.1 Definition

The basic definition of nested harmonic sums with positive indices Sa1,...,an is recursive

Sa(N) =
N∑

n=1

1

na
, (B.1)

Sa,b(N) =

N∑

n=1

1

na
Sb(n). (B.2)

Given a particular sum Sa = Sa1,...,an we define

depth (Sa) = n, (B.3)

transcendentality (Sa) = |a| ≡ a1 + · · · + an. (B.4)

For a product of S sums, we define transcendentality to be the sum of the transcendental-

ities of the factors.

B.2 Shuffle algebra and canonical basis

The basic shuffle algebra relation is

Sa Sb1,...,bk
= Sa,b1,...,bk

+ Sb1,a,b2,...,bk
+ · · · + Sb1,...,bk,a (B.5)

−Sa+b1,...,bk
− Sb1,a+b2,...,bk

− · · · − Sb1,...,a+bk
.

It conserves the total transcendentality . A very useful special case is

Sa Sb = Sab + Sba − Sa+b. (B.6)

Applying it iteratively we can reduce sums of the form Sa···a to products of simple sums of

depth 1. In particular, we list

Saa =
1

2
(S2

a + S2a), (B.7)

Saaa =
1

6
(S3

a + 3Sa S2a + 2S3a), (B.8)

Saaaa =
1

24
(S4

a + 6S2
a S2a + 3S2

2a + 8Sa S3a + 6S4a). (B.9)
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A more general shuffle relation is

Sa1,...,an(N)Sb1,...,bm
(N) =

N∑

ℓ=1

1

ℓa1

Sa2,...,an(ℓ)Sb1,...,bm
(ℓ) + (B.10)

+
N∑

ℓ=1

1

ℓb1
Sa1,...,an(ℓ)Sb2,...,bm

(ℓ) +

−
N∑

ℓ=1

1

ℓa1+b1
Sa2,...,an(ℓ)Sb2,...,bm

(ℓ).

One can apply the basic shuffle relation iteratively and prove that any product of S sums

can be written as a linear combination of S sums with the same total transcendentality .

Thus, a basis of fixed transcendentality τ products of sums can be reduced to single

sums with varying depth. The number of such sums can be shown to be 2τ−1.

The first cases are τ = 1 with the single sum S1, τ = 2 with the sums

S2, S11, (B.11)

and τ = 3 with the sums

S3, S12, S21, S111. (B.12)

Of course, the shuffle algebra can be exploited to reduce the number of independent sums as

well as to permute partially the index sets. This is useful to isolate the large N singularities

of sums like S1,...,1,a in terms which are powers of S1.

B.3 Asymptotic values

Often, it is necessary to compute Sa(∞) which exists if a1 > 1. To this aim, we define

Ha(N) =
∑

N≥n1>n2>···>nr>0

1

na1

1 · · ·nar
r
. (B.13)

The values of H at N = ∞ are the so-called multiple ζ values

Ha(∞) ≡ ζa. (B.14)

The multiple zeta values are known to a large extent and are tabulated as exact combina-

tions of elementary ζ functions. The relation between them and Sa(∞) is simple from the

definition. The first cases at depth 1, 2, 3 are

Sa(∞) = ζa, (B.15)

Sa,b(∞) = ζa,b + ζa+b, (B.16)

Sa,b,c(∞) = ζa,b,c + ζa+b,c + ζa,b+c + ζa+b+c. (B.17)

The general case is obtained by summing over all possible ζa obtained by splitting the

multiindex of S in order-respecting groups (i.e. taking partitions) and taking the sum

within each group. For instance

Sa,b,c,d(∞) = ζa,b,c,d + ζa+b,c,d + ζa,b+c,d + ζa,b,c+d + ζa+b,c+d +

+ζa+b+c,d + ζa,b+c+d + ζa+b+c+d (B.18)
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B.4 Derivatives

The analytic continuation of Sa(N) can be obtained from

Sa,b(N) =

∞∑

n=1

[
1

na
Sb(n) −

1

(n+N)a
Sb(n+N)

]
, (B.19)

which can be differentiated with respect to N . This can be used to take derivatives of S

sums.

An equivalent practical method starts from

Sa,b(N + 1) − Sa,b(N) =
1

(N + 1)a
Sb(N + 1). (B.20)

Taking a derivative and summing we find

S′
a,b(N) = −aSa+1,b +

N∑

n=1

1

na
S′

b
(n) + ca,b, (B.21)

where ca,b is a constant to be determined by the condition S′
a,b(∞) = 0. By induction over

the depth, one obtains all the desired derivatives. For instance

S′
a(N) = −aSa+1 + ca = a (ζa+1 − Sa+1). (B.22)

S′
a,b(N) = −aSa+1,b +

N∑

n=1

1

na
S′

b(n) + ca,b = (B.23)

= −aSa+1,b − b Sa,b+1 + b Sa ζb+1 + ca,b, ,

with

ca,b = aSa+1,b(∞) + b Sa,b+1(∞) − b ζa ζb+1. (B.24)
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